4.7 Review

Potassium: a neglected nutrient in global change

期刊

GLOBAL ECOLOGY AND BIOGEOGRAPHY
卷 24, 期 3, 页码 261-275

出版社

WILEY
DOI: 10.1111/geb.12259

关键词

Climate change; drought; ecological stoichiometry; eutrophication; global change; invasiveness; N:K; plant growth

资金

  1. Spanish Government [CGL2013-48074-P]
  2. Catalan Government [SGR 2014-274]
  3. European Research Council [ERC-2013-SyG-610028]

向作者/读者索取更多资源

AimPotassium (K) is the second most abundant nutrient in plant photosynthetic tissues after nitrogen (N). Thousands of physiological and metabolic studies in recent decades have established the fundamental role of K in plant function, especially in water-use efficiency and economy, and yet macroecological studies have mostly overlooked this nutrient. MethodsWe have reviewed available studies on the content, stoichiometry and roles of K in the soil-plant system and in terrestrial ecosystems. We have also reviewed the impacts of global change drivers on K content, stoichiometry and roles. ConclusionsThe current literature indicates that K, at a global level, is as limiting as N and phosphorus (P) for plant productivity in terrestrial ecosystems. Some degree of K limitation has been seen in up to 70% of all studied terrestrial ecosystems. However, in some areas atmospheric K deposition from human activities is greater than that from natural sources. We are far from understanding the K fluxes between the atmosphere and land, and the role of anthropogenic activities in these fluxes. The increasing aridity expected in wide areas of the world makes K more critical through its role in water-use efficiency. N deposition exerts a strong impact on the ecosystem K cycle, decreasing K availability and increasing K limitation. Plant invasive success is enhanced by higher soil K availability, especially in environments without strong abiotic stresses. The impacts of other drivers of global change, such as increasing atmospheric CO2 or changes in land use, remain to be elucidated. Current models of the responses of ecosystems and carbon storage to projected global climatic and atmospheric changes are now starting to consider N and P, but they should also consider K, mostly in arid and semi-arid ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据