4.7 Article

Dynamic recrystallization behavior and microstructural evolution of Mg alloy AZ31 through high-speed rolling

期刊

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
卷 34, 期 10, 页码 1747-1755

出版社

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2018.03.002

关键词

Magnesium alloy; High-speed rolling; Twinning; Dynamic recrystallization; Microstructure

资金

  1. National Research Foundation of Korea (NRF) - Korean government (MSIP, South Korea) [2016R1C1B2012140, 2017R1A4A1015628]
  2. Korean Institute of Industrial Technology [KITECH JA180001]

向作者/读者索取更多资源

High-speed rolling (HSR) is known to improve the workability of Mg alloys significantly, which makes it possible to impose a large reduction in a single pass without fracture. In the present study, dynamic recrystallization (DRX) behavior and microstructural and textural variations of Mg alloy AZ31 during a HSR process were investigated by conducting rolling with different imposed reductions in the range of 20%-80% at a high rolling speed of 470 m/min and 400 degrees C. High-strain-rate deformation during HSR suppresses dislocation slips but promotes twinning, which results in the formation of numerous twins of several types, i.e., {10-12} extension twins, {10-11} and {10-13} contraction twins, and {10-11}-{10-12} double twins. After twinning, high strain energy is accumulated in twin bands because their crystallographic orientations are favorable for basal slips, leading to subsequent DRX at the twin bands. Accordingly, twinning activation and twinning-induced DRX behavior play crucial roles in accommodating plastic deformation during HSR and in varying microstructure and texture of the high-speed-rolled (HSRed) sheets. Area fraction of fine DRXed grains formed at the twin bands increases with increasing rolling reduction, which is attributed to the combined effects of increased strain, strain rate, and deformation temperature and a decreased critical strain for DRX. Size, internal strain, and texture intensity of the DRXed grains are smaller than those of unDRXed grains. Therefore, as rolling reduction increases, average grain size, stored internal energy, microstructural inhomogeneity, and basal texture intensity of the HSRed sheets gradually decrease owing to an increase in the area fraction of the DRXed grains. (C) 2018 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据