4.8 Article

The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests

期刊

GLOBAL CHANGE BIOLOGY
卷 21, 期 6, 页码 2283-2295

出版社

WILEY
DOI: 10.1111/gcb.12859

关键词

allocation; carbon cycle; carbon use efficiency; drought; gross primary productivity; net primary productivity; residence time; respiration; root productivity; tropical forests

资金

  1. UK Natural Environment Research Council [NE/D01025X/1, NE/D014174/1]
  2. European Union Framework 7 project GEOCARBON [283080]
  3. Gordon and Betty Moore Foundation
  4. Jackson Foundation
  5. European Research Council Advanced Investigator Award
  6. ERC Advanced Grant
  7. Royal Society Wolfson Research Merit Award
  8. Natural Environment Research Council [NE/D010306/1, NE/D01185X/1, NE/D01025X/1, NER/A/S/2003/00608/2, NE/B504630/1, NE/D014174/1, NE/J011002/1, NE/I02982X/1, NE/J023531/1, NE/J023418/1, NE/G018278/1, NE/F005776/1] Funding Source: researchfish
  9. NERC [NE/D01025X/1, NE/D014174/1, NE/J011002/1, NE/F005776/1, NE/D010306/1, NE/J023418/1, NE/D01185X/1, NE/J023531/1, NE/I02982X/1, NE/G018278/1] Funding Source: UKRI

向作者/读者索取更多资源

Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据