4.6 Article

Synergistic effect of size distribution on the electrical and thermal conductivities of graphene-based paper

期刊

JOURNAL OF MATERIALS SCIENCE
卷 53, 期 14, 页码 10261-10269

出版社

SPRINGER
DOI: 10.1007/s10853-018-2345-x

关键词

-

资金

  1. Science Foundation of China University of Petroleum, Beijing [2462016YJRC007, C201603]
  2. National Natural Science Foundation of China [21776308, 21576289]
  3. Thousand Talents Program

向作者/读者索取更多资源

Flexible graphene-based paper is promising for wide applications due to its outstanding electrical and thermal conductivities. Graphene flakes with large size are usually known as the key factor for improved paper performance. However, we find that a combination of flakes with large and small sizes is more favorable for both electrical and thermal conductivities than pure large flakes. In this work, flexible paper with enhanced electrical and thermal properties was fabricated by mixing graphene flakes with various size distributions. Large-size graphene (LSG) flakes play the role of a backbone structure, whereas small-size graphene (SSG) flakes fill the voids in the paper without disturbing the high orientation. The physical properties of the as-prepared graphene papers with contents of SSG varying from 0 to 100% have been investigated. It is found that the electrical and thermal conductivities of the paper with 25 wt% SSG are both around 140% higher than that of pure LSG paper. Our results indicate that the lightweight and flexible graphene-based paper has great potential for lateral heat dissipation applications requiring heat movement in a particular direction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据