4.5 Article

Deformation behavior and energy absorption capability of polymer and ceramic-polymer composite microlattices under cyclic loading

期刊

JOURNAL OF MATERIALS RESEARCH
卷 33, 期 3, 页码 274-289

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1557/jmr.2017.485

关键词

-

资金

  1. Robert Bosch Foundation

向作者/读者索取更多资源

Specifically designed microlattices are able to combine outstanding mechanical and physical properties and, thus, expand the actual limits of the material property space. However, post-yield softening induced by plastic buckling or crushing of individual ligaments limits performance under cyclic loading, which affects their energy absorption capabilities. Understanding deformation under repeated loading is key to further optimizing these high-strength materials. While until now mainly hollow metallic microlattices and multistable or tailored buckling structures have been analyzed, this study investigates deformation and failure of polymer and ceramic-polymer microlattices under cyclic loading to understand the (i) influence of the microarchitecture and (ii) influence of processing conditions on the energy absorption capability. Despite fracture of individual struts, the stretching-dominated microarchitectures possess a superior behavior especially for larger cycle numbers. In combination with a specific annealing treatment of the polymer material, high recoverability and energy dissipation can be achieved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据