4.5 Article

Evolution of frozen magnetic state in co-precipitated Zn delta Co1-delta Fe2O4 (0 <= delta <= 1) ferrite nanopowders

期刊

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
卷 454, 期 -, 页码 368-374

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmmm.2018.02.001

关键词

Nanoparticles; Freezing temperature; Spinel ferrite; Magnetic anisotropy

向作者/读者索取更多资源

The evolution of frozen magnetic state of Zn delta Co1 - delta Fe2O4 (0 <= delta <= 1) ferrite nanoparticles was studied by applying vibrating sample magnetometer measurements in temperature range 5-350 K and magnetic fields up to 7 T. It was shown that gradual conversion from the inverse spinel (delta = 0) to the normal one (delta = 1.0) is correlated with a drop of freezing temperature T-f (corresponding to blocking of mean magnetic moment of the system) from 238 K (delta = 0) to 9 K (delta = 1.0) and with a decrease of magnetic anisotropy constant K-1 from about 8 . 10(5) J/m(3) to about 3 . 10(5) J/m(3). The percolation threshold predicted for bulk ferrites at 1 - delta approximate to 0.33 was observed as a significant weakness of ferrimagnetic coupling. In this case magnetization curves, determined according to the zero field cooling protocol, reveal two distinct maxima indicating that the system splits into two assemblies with specific ions distribution between A and B sites. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据