4.6 Article

Enhanced luminescence efficiency of wet chemical route synthesized InP-based quantum dots by a novel method: Probing the humidity sensing properties

期刊

JOURNAL OF LUMINESCENCE
卷 198, 期 -, 页码 108-116

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jlumin.2018.02.001

关键词

III-V semiconductor; Quantum dots; PL enhancement; Post synthesis treatment; Nascent hydrogen; Humidity treatment

类别

资金

  1. CSIR

向作者/读者索取更多资源

In indium phosphide quantum dots (InP QDs), the presence of surface states due to unbonded indium or phosphorus atoms quenches its photoluminescence (PL) efficiencies. Hence, it is imperative to passivate these surface states to achieve high photoluminescence efficiencies of InP nanocrystals. In this work, a novel postsynthesis nascent H chemical treatment to enhance the quantum yield of single-pot, wet chemical route synthesized InP QD's is reported for the first time. The main advantages of this post-synthesis treatment are: (i) it is easy, inexpensive and reproducible and (ii) it does not involve harsh chemical treatment viz. dipping of InP QDs in HF-based solutions, nor it requires annealing at high temperatures which may be detrimental to the fragile structure of InP. The significant increment in PL intensity upon aforementioned hydrogen treatment is due to the passivation of surface states and structural recrystallization mechanism that promotes radiative recombination of electrons and holes and hence higher lifetime values. An enhancement in PL intensity of as-synthesized InP QDs upon nascent hydrogen treatment is quite remarkable and is even better than that accomplished by InP-ZnS core-shell QDs with similar size-distribution. The hydrophobicity of H-treated InP QD's is found to be more than untreated InP thus implying higher compactness and structural rigidity similar to as achieved by InP-ZnS core-shell QDs. Mechanisms related to nascent hydrogen treatment, photo-oxidation and PL enhancement and its effect on the surface stoichiometry of InP QDs are discussed via structural, morphological, compositional and optical studies corroborated by various complementary techniques viz. SEM, HRTEM, EDAX, NMR, DLS, Zeta Potential, Contact Angle, PL and Transient Absorption respectively. The application of InP films as a humidity sensor has been demonstrated and untreated InP film in particular shows higher sensitivity values upon exposure to humid treatment as compared with H-treated InP and InP-ZnS core-shell QD's respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据