4.6 Article

Autophagic myelin destruction by schwann cells during wallerian degeneration and segmental demyelination

期刊

GLIA
卷 64, 期 5, 页码 730-742

出版社

WILEY
DOI: 10.1002/glia.22957

关键词

autophagy; lysosome; conditional knockout; inflammatory neuropathy; dedifferentiation; injury

资金

  1. Korean Health Technology R&D Project, Ministry of Health Welfare [HI14C18070000]

向作者/读者索取更多资源

As lysosomal hydrolysis has long been suggested to be responsible for myelin clearance after peripheral nerve injury, in this study, we investigated the possible role of autophagolysosome formation in myelin phagocytosis by Schwann cells and its final contribution to nerve regeneration. We found that the canonical formation of autophagolysosomes was induced in demyelinating Schwann cells after injury, and the inhibition of autophagy via Schwann cell-specific knockout of the atg7 gene or pharmacological intervention of lysosomal function caused a significant delay in myelin clearance. However, Schwann cell dedifferentiation, as demonstrated by extracellular signal-regulated kinase activation and c-Jun induction, and redifferentiation were not significantly affected, and thus the entire repair program progressed normally in atg7 knockout mice. Finally, autophagic Schwann cells were also found during segmental demyelination in a mouse model of inflammatory peripheral neuropathy. Together, our findings suggest that autophagy is the self-myelin destruction mechanism of Schwann cells, but mechanistically, it is a process distinct from Schwann cell plasticity for nerve repair. GLIA 2016;64:730-742

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据