4.6 Article

MicroRNA-Mediated Non-Cell-Autonomous Regulation of Cortical Radial Glial Transformation Revealed by a Dicer1 Knockout Mouse Model

期刊

GLIA
卷 63, 期 5, 页码 860-876

出版社

WILEY-BLACKWELL
DOI: 10.1002/glia.22789

关键词

Dicer (Dicer1); Notch1; Jagged2; Tenascin C; miR-124

资金

  1. National Natural Science Foundation of China [30971633, 31171045]
  2. Department of Science and Technology of Sichuan Province [2011JTD0005]
  3. Program for Changjiang Scholars and lnnovative Research Team in University (PCSIRT) [IRT0935]

向作者/读者索取更多资源

Radial glia (RG), as neurogenic progenitors and neuronal migration scaffolds, play critical roles during cortical neurogenesis. RG transformation into astrocytes, marking the transition from developmental to physiological function of these cells, is an important step during cortical development. In this study, we aim to determine the roles of microRNAs (miRNAs) during this biological process. In a conditional Dicer1-null mouse where Dicer1 is deleted in both RG and their neuronal progeny, we observe delayed RG transformation as revealed by the persistence of their radial processes, and reduced number and complexity of translocated RG cell bodies in the postnatal cerebral cortex. Downregulation of Notch1 signaling is crucial to RG transformation, and consistently we find that Notch1 signaling is enhanced in the Dicer1-null cerebral cortex. In addition, we show that, among the Notch1 ligands, Jagged2 (Jag2) is preferentially upregulated in the postnatal Dicer1-null cerebral cortex as well as primary embryonic cortical cultures with instant Dicer1 deletion. Functionally, Dicer1-deleted postnatal cerebellar cells with elevated Jag2 expression stimulate a stronger Notch1 signaling in a RG clone L2.3 when co-cultured than control cells. Therefore, we unravel a novel non-cell-autonomous mechanism that regulates RG transformation by modulating Notch1 signaling via miRNA-mediated suppression of the Nocth1 ligand Jag2. Furthermore, we validate Jag2 as a miR-124 target gene and demonstrate in vitro that Jag2 expression is highly sensitive to Dicer1 deletion. Finally, we propose a new concept of MiRNA-Sensitive target genes, identification of which may unravel a unique mode of miRNA-mediated gene expression regulation. GLIA 2015;63:860-876

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据