4.6 Article

Prenatal Exposure to Inflammatory Conditions Increases Cx43 and Panx1 Unopposed Channel Opening and Activation of Astrocytes in the Offspring Effect on Neuronal Survival

期刊

GLIA
卷 63, 期 11, 页码 2058-2072

出版社

WILEY
DOI: 10.1002/glia.22877

关键词

neuroinflammation; hemichannel; connexin; glia; pannexin

资金

  1. FONDECYT [11121133, 1131025]
  2. Committee for Aid and Education in Neurochemistry from the International Society for Neurochemistry

向作者/读者索取更多资源

Several epidemiological studies indicate that children born from mothers exposed to infections during gestation, have an increased risk to develop neurological disorders, including schizophrenia, autism and cerebral palsy. Given that it is unknown if astrocytes and their crosstalk with neurons participate in the above mentioned brain pathologies, the aim of this work was to address if astroglial paracrine signaling mediated by Cx43 and Panx1 unopposed channels could be affected in the offspring of LPS-exposed dams during pregnancy. Ethidium uptake experiments showed that prenatal LPS-exposure increases the activity of astroglial Cx43 and Panx1 unopposed channels in the offspring. Induction of unopposed channel opening by prenatal LPS exposure depended on intracellular Ca2+ levels, cytokine production and activation of p38 MAP kinase/iNOS pathway. Biochemical assays and Fura-2AM/DAF-FM time-lapse fluorescence images revealed that astrocytes from the offspring of LPS-exposed dams displayed increased spontaneous Ca2+ dynamics and NO production, whereas iNOS levels and release of IL-1 beta/TNF-alpha were also increased. Interestingly, we found that prenatal LPS exposure enhanced the release of ATP through astroglial Cx43 and Panx1 unopposed channels in the offspring, resulting in an increased neuronal death mediated by the activation of neuronal P2X(7) receptors and Panx1 channels. Altogether, this evidence suggests that astroglial Cx43 and Panx1 unopposed channel opening induced by prenatal LPS exposure depended on the inflammatory activation profile and the activation pattern of astrocytes. The understanding of the mechanism underlying astrocyte-neuron crosstalk could contribute to the development of new strategies to ameliorate the brain abnormalities induced in the offspring by prenatal inflammation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据