4.7 Article

Chitosan-Carboxymethyl-5-Fluorouracil-Folate Conjugate Particles: Microwave Modulated Uptake by Skin and Melanoma Cells

期刊

JOURNAL OF INVESTIGATIVE DERMATOLOGY
卷 138, 期 11, 页码 2412-2422

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jid.2018.04.037

关键词

-

资金

  1. UiTM [0141903]
  2. MOSTI
  3. MOHE
  4. Gomal University Pakistan

向作者/读者索取更多资源

5-Fluorouracil delivery profiles in the form of chitosan-folate submicron particles through skin and melanoma cells in vitro were examined using microwaves as the penetration enhancer. The in vivo pharmacokinetic profile of 5-fluorouracil was also determined. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate was synthesized and processed into submicron particles by spray-drying technique. The size, zeta potential, morphology, drug content, and drug release, as well as skin permeation and retention, pharmacokinetics, in vitro SKMEL-28 melanoma cell line cytotoxicity, and intracellular trafficking profiles of drug/particles, were examined as a function of skin/melanoma cell treatment by microwaves at 2,450 MHz for 5 + 5 minutes. The level of skin drug/particle retention in vitro and in vivo increased in skin treated by microwaves. This was facilitated by the drug conjugating to chitosan and microwaves fluidizing both the protein and lipid domains of epidermis and dermis. The uptake of chitosan-folate particles by melanoma cells was mediated via lipid raft route. It was promoted by microwaves, which fluidized the lipid and protein regimes of the cell membrane, and this increased drug cytotoxicity. In vivo pharmacokinetic study indicated skin treatment by microwave-enhanced drug retention but not permeation. The combination of microwaves and submicron particles synergized skin drug retention and intracellular drug delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据