4.5 Review

Recent Advances in Electrochemical Performances of Graphene Composite (Graphene-Polyaniline/Polypyrrole/Activated Carbon/Carbon Nanotube) Electrode Materials for Supercapacitor: A Review

出版社

SPRINGER
DOI: 10.1007/s10904-018-0779-x

关键词

Graphene; Polyaniline; Polypyrrole; Supercapacitor; Electrode material; Energy and power density

向作者/读者索取更多资源

The latest trend in the direction of miniaturized portable electronic devices has brought up necessitate for rechargeable energy sources. Among the various non conventional energy devices, the supercapacitor is the promising candidate for gleaning the energy. Supercapacitor, as a new energy device that colligates the gap between conventional capacitors and batteries, it has attracted more attention due to its high power density and long cycle life. Many researchers work on, synthesizing new electrode material for the development of supercapacitor. The electrode material possesses salient structure and electrochemical properties exhibit the efficient performance of the supercapacitor. Graphene has high carrier mobility, thermal conductivity, elasticity and stiffness and also has a theoretical specific capacitance of 2630 m(2)g(- 1) corresponds to a specific capacitance of 550 Fg(- 1). This article summarizes and reviews the electrochemical performance and applications of various graphene composite materials such as graphene/polyaniline, graphene/polypyrrole, graphene/metal oxide, graphene/activated carbon, graphene/carbon nanotube as an electrode materials towards highly efficient supercapacitors and also dealt with symmetric, asymmetric and hybrid nature of the graphene based supercapacitor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据