4.6 Article

Copper Regulates the Canonical NLRP3 Inflammasome

期刊

JOURNAL OF IMMUNOLOGY
卷 200, 期 5, 页码 1607-1617

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1700712

关键词

-

向作者/读者索取更多资源

Inflammasomes are multimeric protein complexes that are activated through a NOD-like receptor and regulate the proteolytic activation of caspase-1 and cytokines, like IL-1 beta. The NLRP3 inflammasome is implicated in many human pathologies including infections, autoinflammatory syndromes, chronic inflammation, and metabolic diseases; however, the molecular mechanisms of activation are not fully understood. In this study we show that NLRP3 inflammasome activation requires intracellular copper. A clinically approved copper chelator, tetrathiomolybdate, inhibited the canonical NLRP3 but not the AIM2, NLRC4, and NLRP1 inflammasomes or NF-kappa B-dependent priming. We demonstrate that NLRP3 inflammasome activation is blocked by removing copper from the active site of superoxide dismutase 1, recapitulating impaired inflammasome function in superoxide dismutase 1-deficient mice. This regulation is specific to macrophages, but not monocytes, both in mice and humans. In vivo, depletion of bioavailable copper resulted in attenuated caspase-1-dependent inflammation and reduced susceptibility to LPS-induced endotoxic shock. Our results indicate that targeting the intracellular copper homeostasis has potential for the treatment of NLRP3-dependent diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据