4.7 Review

Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: Applicability of the Triple Collocation method across Mainland China

期刊

JOURNAL OF HYDROLOGY
卷 562, 期 -, 页码 71-83

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2018.04.039

关键词

Triple; Collocation; Precipitation; Evaluation; China; Tibetan Plateau

资金

  1. National Natural Science Foundation of China [7146101701]
  2. China National 973 Project [2013CB036406]

向作者/读者索取更多资源

Evaluating the reliability of satellite and reanalysis precipitation products is critical but challenging over ungauged or poorly gauged regions. The Triple Collocation (TC) method is a reliable approach to estimate the accuracy of any three independent inputs in the absence of truth values. This study assesses the uncertainty of three types of independent precipitation products, i.e., satellite-based, ground-based and model reanalysis over Mainland China using the TC method. The ground-based data set is Gauge Based Daily Precipitation Analysis (CGDPA). The reanalysis data set is European Reanalysis Agency Reanalysis Product (ERA-interim). The satellite based products include five mainstream satellite products. The comparison and evaluation are conducted at 0.25 and daily resolutions from 2013 to 2015. First, the effectiveness of the TC method is evaluated in South China with dense gauge network. The results demonstrate that the TC method is reliable because the correlation coefficient (CC) and root mean square error (RMSE) derived from TC are close to those derived from ground observations, with only 9% and 7% mean relative differences, respectively. Then, the TC method is applied in Mainland China, with special attention paid to the Tibetan Plateau (TP) known as the Earth's third pole with few ground stations. Results indicate that (1) The overall performance of IMERG is better than the other satellite products over Mainland China, followed by 3B42V7, CMORPH-CRT and PERSIANN-CDR. (2) In the TP, CGDPA shows the best overall performance over gauged grid cells, however, over ungauged regions, IMERG and ERA interim slightly outperform CGDPA with similar RMSE but higher mean CC (0.63, 0.61, and 0.58, respectively). It highlights the strengths and potentiality of remote sensing and reanalysis data over the TP and reconfirms the cons of the inherent uncertainty of CGDPA due to interpolation from sparsely gauged data. The study concludes that the TC method provides not only reliable cross-validation results over Mainland China but also a new perspective for comparatively assessing multi-source precipitation products, particularly over poorly gauged regions such as the TP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据