3.8 Proceedings Paper

Iron management in multicrystalline silicon through predictive simulation: point defects, precipitates, and structural defect interactions

出版社

TRANS TECH PUBLICATIONS LTD
DOI: 10.4028/www.scientific.net/SSP.205-206.15

关键词

silicon solar cells; gettering; interstitial iron; precipitated iron

向作者/读者索取更多资源

In multicrystalline silicon for photovoltaic applications, high concentrations of iron are usually found, which deteriorate material performance. Due to the limited solubility of iron in silicon, only a small fraction of the total iron concentration is present as interstitial solute atoms while the vast majority is present as iron suicide precipates. The concentration of iron interstitials can be effectively reduced during phosphorus diffusion gettering (PDG), but this strongly depends on the size and density of iron precipitates, which partly dissolve during high-temperature processing. The distribution of precipitated iron varies along the height of a mc-Si ingot and is not significantly reduced during standard PDG steps. However, the removal of both iron interstitials and precipitates can be enhanced by controlling their kinetics through carefully engineered time-temperature profiles, guided by simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据