4.4 Article

Thermal and Flow Characteristics of Water-Nitrogen Taylor Flow Inside Vertical Circular Tubes

出版社

ASME
DOI: 10.1115/1.4039902

关键词

Taylor flow; numerical simulation; heat transfer; pressure gradients

资金

  1. Shandong Provincial Natural Science Foundation [ZR2018BEE026]
  2. National Science Foundation of China [51210011]
  3. National Science Foundation of Zhejiang Province [LZ13E060001]

向作者/读者索取更多资源

Heat transfer and flow characteristics of Taylor flows in vertical capillaries with tube diameters ranging from 0.5 mm to 2 mm were studied numerically with the volume of fluid (VOF) method. Streamlines, bubble shapes, pressure drops, and heat transfer characteristics of the fully developed gas-liquid Taylor flow were investigated in detail. The numerical data fitted well with experimental results and with the predicted values of empirical correlations. The results indicate that the dimensionless liquid film thickness and bubble rising velocity increase with increasing capillary number. Pressure drops in liquid slug region are higher than the single-phase flow because of the Laplace pressure drop. The flow pattern dependent model and modified flow separation model which takes Bond number and Reynolds number into account can predict the numerical pressure drops well. Compared with the single-phase flow, less time is needed for the Taylor flow to reach a thermal fully developed status. The Nusselt number of Taylor flow is about 1.16-3.5 times of the fully developed single-phase flow with a constant wall heat flux. The recirculation regions in the liquid and gas slugs can enhance the heat transfer coefficient and accelerate the development of the thermal boundary layer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据