4.7 Article

Tradeoff between groundwater arsenite removal efficiency and current production in the self-powered air cathode electrocoagulation with different oxygen reduction pathways

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 357, 期 -, 页码 138-145

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2018.05.048

关键词

Self-powered; Electrocoagulation; Arsenite; Oxygen reduction pathway

资金

  1. National Natural Science Foundation of China [41672236]
  2. State Key Joint Laboratory of Environment Simulation and Pollution Control [15Y03ESPCT]
  3. Tsinghua University Initiative Scientific Research Program [20151080353]
  4. China Postdoctoral Science Foundation [2018M631496]
  5. China Postdoctoral Science Founation [2017M620801]
  6. Thousand Talents Plan for Young Professionals
  7. CAST [2015QNRC001]

向作者/读者索取更多资源

Naturally occurring arsenic enrichment in aquifers posts a huge threat to drinking water safety. To achieve energy-efficient arsenite [As(III)] removal, a self-powered iron electrocoagulation was developed that coupled iron corrosion anode with oxygen reduction air cathode for simultaneous As(III) oxidation and removal. Activated carbon (AC), which favored the four-electron oxygen reduction reaction (ORR, O-2+4e(-) + 4H(+) -> 2H(2)O, E-0' = 0.816 V), and carbon black (CB), which favored two-electron ORR (O-2+2e(-) + 2H(+) -> H2O2, E-0' = 0.283 V), were evaluated for As(III) removal efficiency and current production performance. The comparison showed a tradeoff between higher current (i.e., higher iron corrosion rate) attributed to the higher reduction potential with four-electron ORR, and higher H2O2 production for improved As(III) oxidation with two-electron ORR yet the lower reduction potential The CB cathode that favored H2O2 production had the best As(III) removal of 99.2 +/- 0.4% and the lowest maximum power density of 60 +/- 0.3 mW(-2), while the AC cathode showed the opposite trend. These results suggested that cathode catalysts need to be carefully evaluated for the balance of As(III) removal and current production to provide a sustainable and effective solution for groundwater As(III) removal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据