4.7 Article

Study on highly enhanced photocatalytic tetracycline degradation of type II AgI/CuBi2O4 and Z-scheme AgBr/CuBi2O4 heterojunction photocatalysts

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 349, 期 -, 页码 111-118

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2018.01.042

关键词

Photocatalysis; CuBi2O4; Tetracycline; Type II heterojunction; Z-scheme heterojunction

资金

  1. Collaborative Innovation Center of Suzhou Nano Science and Technology
  2. National Natural Science Foundation of China [51725204, 21771132, 51422207, 51572179, 21471106, 21501126]
  3. Natural Science Foundation of Jiangsu Province [BK20161216]
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

向作者/读者索取更多资源

Removal of antibiotics from aqueous solutions by photocatalysis is an advanced technology for environmental remediation. Herein, we have fabricated a series of AgX (X = I, Br)/CuBi2O4 composites through an in-situ precipitation method. The photocatalytic activity of the obtained photocatalysts was measured by the degradation of tetracycline (TC) under visible light irradiation (lambda > 420 nm). All the AgX (X = I, Br)/CuBi2O4 composites exhibit much higher photocatalytic activity than that of pure CuBi2O4. The enhanced photocatalytic activity is mainly attributed to the efficient interfacial charge separation and migration in the AgX (X = I, Br)/CuBi2O4 heterojunctions. Meanwhile, AgX (X = I, Br)/CuBi2O4 heterojunctions display excellent photocatalytic stability, and the photocatalytic degradation rates were not obvious decreased even after five successive cycles. Based on the energy band structure, the radicals trapping and electronic spin resonance (ESR) experiments, the Z-scheme mechanism of AgBr/CuBi2O4 and type II mechanism of AgI/CuBi2O4 heterojunction photocatalysts were tentatively discussed, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据