4.7 Article

Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe2O3) particles derived from sol-gel method and their photocatalytic performances

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 345, 期 -, 页码 27-37

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2017.11.009

关键词

Sol-gel; Hematite; Mesoporous; Iodine doping; Photocatalytic activity

资金

  1. Marmara University [FEN-A-131216-0544]

向作者/读者索取更多资源

In this work, iodine (1) doped hollow and mesoporous Fe2O3 photocatalyst particles were fabricated for the first time through sol-gel method. Phase structure, surface morphology, particle size, specific surface area and optical band gap of the synthesized Fe2O3 photocatalysts were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), BET surface analysis, particle size analyzer and UV-vis diffuse reflectance spectrum (UV-vis DRS), respectively. Also, electrochemical properties and photoluminescence spectra of Fe2O3 particles were measured. The results illustrated that high crystalline, hollow and mesoporous Fe2O3 particles were formed. The optical band gap values of the Fe203 photocatalysts changed between 2.104 and 1.93 eV. Photocatalytic efficiency of Fe2O3 photocatalysts were assessed via MB solution. The photocatalytic activity results exhibited that I doping enhanced the photocatalytic efficiency. 1% mole iodine doped (I-2) Fe2O3 photocatalyst had 97.723% photo degradation rate and 8.638 x 10(-2) min(-1) kinetic constant which showed the highest photocatalytic activity within 45 min. Moreover, stability and reusability experiments of Fe2O3 photocatalysts were carried out. The Fe2O3 photocatalysts showed outstanding stability after four sequence tests. As a result, I doped Fe2O3 is a good candidate for photocatalysts. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据