4.5 Article

Novel mechanisms of Na+ retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK

期刊

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00524.2013

关键词

AMP-activated protein kinase; Na+-K+-2Cl(-) cotransporter; oxidative stress responsive 1 kinase; STE-20/SPS1-related proline-alanine-rich protein kinase

资金

  1. Australian National Health and Medical Research Council
  2. Victorian Government's Operational Infrastructure Support Program
  3. Medical Postgraduate Scholarship from the Australian National Health and Medical Research Council

向作者/读者索取更多资源

Enhanced tubular reabsorption of salt is important in the pathogenesis of obesity-related hypertension, but the mechanisms remain poorly defined. To identify changes in the regulation of salt transporters in the kidney, C57BL/6 mice were fed a 40% fat diet [high-fat diet (HFD)] or a 12% fat diet (control diet) for 14 wk. Compared with control diet-fed mice, HFD-fed mice had significantly greater elevations in weight, blood pressure, and serum insulin and leptin levels. When we examined Na+ transporter expression, Na+-K+-2Cl(-) cotransporter (NKCC2) was unchanged in whole kidney and reduced in the cortex, Na+-Cl- cotransporter (NCC) and alpha-epithelial Na+ channel (ENaC) and gamma-ENaC were unchanged, and beta-ENaC was reduced. Phosphorylation of NCC was unaltered. Activating phosphorylation of NKCC2 at S126 was increased 2.5-fold. Activation of STE-20/SPS1-related proline-alanine- rich protein kinase (SPAK)/oxidative stress responsive 1 kinase (OSR1) was increased in kidneys from HFD-fed mice, and enhanced phosphorylation of NKCC2 at T96/T101 was evident in the cortex. Increased activity of NKCC2 in vivo was confirmed with diuretic experiments. HFD-fed mice had reduced activating phosphorylation of AMP-activated protein kinase (AMPK) in the renal cortex. In vitro, activation of AMPK led to a reduction in phospho-SPAK/phospho-OSR1 in AMPK(+/+) murine embryonic fibroblasts (MEFs), but no effect was seen in AMPK(-/-) MEFs, indicating an AMPK-mediated effect. Activation of the with no lysine kinase/SPAK/OSR1 pathway with low-NaCl solution invoked a greater elevation in phospho-SPAK/phospho-OSR1 in AMPK(-/-) MEFs than in AMPK(+/+) MEFs, consistent with a negative regulatory effect of AMPK on SPAK/OSR1 phosphorylation. In conclusion, this study identifies increased phosphorylation of NKCC2 on S126 as a hitherto-unrecognized mediator of enhanced Na+ reabsorption in obesity and identifies a new role for AMPK in regulating the activity of SPAK/OSR1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据