4.6 Article

Acoustic and elastic modeling by optimal time-space-domain staggered-grid finite-difference schemes

期刊

GEOPHYSICS
卷 80, 期 1, 页码 T17-T40

出版社

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/GEO2014-0269.1

关键词

-

资金

  1. National Natural Science Foundation of China [41074100, 41474110]
  2. National High Technology Research and Development Program of China (863 program) [2013AA064201]
  3. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

向作者/读者索取更多资源

Staggered-grid finite-difference (SFD) methods are widely used in modeling seismic-wave propagation, and the coefficients of finite-difference (FD) operators can be estimated by minimizing dispersion errors using Taylor-series expansion (TE) or optimization. We developed novel optimal time-space-domain SFD schemes for acoustic-and elastic-wave-equation modeling. In our schemes, a fourth-order multiextreme value objective function with respect to FD coefficients was involved. To yield the globally optimal solution with low computational cost, we first used variable substitution to turn our optimization problem into a quadratic convex one and then used least-squares (LS) to derive the optimal SFD coefficients by minimizing the relative error of time-space-domain dispersion relations over a given frequency range. To ensure the robustness of our schemes, a constraint condition was imposed that the dispersion error at each frequency point did not exceed a given threshold. Moreover, the hybrid absorbing boundary condition was applied to remove artificial boundary reflections. We compared our optimal SFD with the conventional, TE-based time-space-domain, and LS-based SFD schemes. Dispersion analysis and numerical simulation results suggested that the new SFD schemes had a smaller numerical dispersion than the other three schemes when the same operator lengths were adopted. In addition, our LS-based time-space-domain SFD can obtain the same modeling accuracy with shorter spatial operator lengths. We also derived the stability condition of our schemes. The experiment results revealed that our new LS-based SFD schemes needed a slightly stricter stability condition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据