4.7 Article

Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt pathway

出版社

BMC
DOI: 10.1186/s13046-018-0677-7

关键词

microRNA-32-5p; PTEN; Exosome; Hepatocellular carcinoma; Multidrug resistance

类别

资金

  1. National Natural Science Foundation of China [81301909, 81672810]
  2. International cooperation project in science and technology of Shaanxi province [2016KW-017]
  3. Natural Science Foundation of Shaanxi Province [2017JM8019]

向作者/读者索取更多资源

Background: Multidrug resistance is the main obstacle for hepatocellular carcinoma (HCC) treatment. miR-32-5p is involved in HCC progression but its function in multidrug resistance is still unclear. Here we aim to find out the function of miR-32-5p in inducing multidrug resistance and its underlying mechanisms of transforming sensitive cell to resistant cell. Methods: We detected the expression of miR-32-5p and PTEN in the multidrug-resistant cell line (Bel/5-FU) and the sensitive cell line (Bel7402), HCC and para-carcinoma liver tissues through real-time PCR. Dual-luciferase reporter assay verified PTEN is the target of miR-32-5p. Exosomes from sensitive and multidrug resistant cell line were obtained and confirmed through ultracentrifuge and Nano Analyzer. Gain-and loss-of-function experiments, rescue experiments, a PI3K/Akt pathway inhibitor, an exosome biogenesis inhibitor, and nude mice xenograft models were used to determine the underlying mechanisms of miR-32-5p and PTEN, as well as exosomal miR-32-5p in inducing multidrug resistance in vitro and in vivo. Results: miR-32-5p was significantly elevated but PTEN was reduced in Bel/5-FU. An inverse correlation between miR-32-5p and PTEN was confirmed in HCC cell lines and patients; moreover, high expression of miR-32-5p and low expression of PTEN were positively associated with poor prognosis. Over-expression of miR-32-5p activated the PI3K/Akt pathway by suppressing PTEN and induced multidrug resistance via exosomes through promoting angiogenesis and epithelial-mesenchymal transition (EMT). Conclusions: Our study demonstrated that the multidrug-resistant cell, Bel/5-FU delivers miR-32-5p to sensitive cell, Bel7402 by exosomes and activates the PI3K/Akt pathway to further induce multidrug resistance by modulating angiogenesis and EMT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据