4.2 Article

Facile one-step synthesis of functionalized biochar from sustainable prolifera-green-tide source for enhanced adsorption of copper ions

期刊

JOURNAL OF ENVIRONMENTAL SCIENCES
卷 73, 期 -, 页码 185-194

出版社

SCIENCE PRESS
DOI: 10.1016/j.jes.2018.02.012

关键词

Hydrothermal carbonization; Functionalized biochar; Adsorption; Heavy metal

资金

  1. Tai Shan Scholar Foundation [ts201511003]
  2. Fundamental Research Funds for the Central Universities [DUT17RC(3)044]

向作者/读者索取更多资源

The use of biochars formed by hydrothermal carbonization for the treatment of contaminated water has been greatly limited, due to their poorly developed porosity and low content of surface functional groups. Also, the most common modification routes inevitably require post-treatment processes, which are time-consuming and energy-wasting. Hence, the objective of this research was to produce a cost-effective biochar with improved performance for the treatment of heavy metal pollution through a facile one-step hydrothermal carbonization process coupled with ammonium phosphate, thiocarbamide, ammonium chloride or urea, without any posttreatment The effects of various operational parameters, including type of modification reagent, time and temperature of hydrothermal treatment, and ratio of modification reagent to precursor during impregnation, on the copper ion adsorption were examined. The adsorption data fit the Langmuir adsorption isotherm model quite well. The maximum adsorption capacities (mg/g) of the biochars towards copper ions followed the order of 40-8h-1.0-APBC (95.24) > 140-8h-0-BC (12.52) > 140-8h-1.0-TUBC (12.08) > 140-8h-1.0-ACBC (7.440) > 140-8h-1.0-URBC (5.277). The results indicated that biochars modified with ammonium phosphate displayed excellent adsorption performance toward copper ions, which was 7.6-fold higher than that of the pristine biochar. EDX and FT-IR analyses before and after adsorption demonstrated that the main removal mechanism involved complexation between the phosphate groups on the surface of the modified biochars and copper ions. (C) 2018 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据