4.2 Article

Effective adsorption of sulfamethoxazole, bisphenol A and methyl orange on nanoporous carbon derived from metal-organic frameworks

期刊

JOURNAL OF ENVIRONMENTAL SCIENCES
卷 63, 期 -, 页码 250-259

出版社

SCIENCE PRESS
DOI: 10.1016/j.jes.2017.10.019

关键词

Nanoporous carbon; MOFs; Adsorption; Sulfamethoxazole; Bisphenol A; Methyl orange

资金

  1. National Natural Science Foundation of China [21437001, 21407019]
  2. Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology [QA201617]

向作者/读者索取更多资源

Nanoporous carbons (NPCs) derived from metal-organic frameworks (MOFs) are attracting increasing attention inmany areas by virtue of their high specific surface area, large pore volume and unique porosity. The present work reports the preparation of an NPC with high surface area (1731 m(2)/g) and pore volume (1.68 cm(3)/g) by direct carbonization of MOF-5. We examined the adsorption of three typical contaminants from aqueous solutions, i. e., sulfamethoxazole (SMX), bisphenol A (BPA) and methyl orange (MO), by using the as-prepared NPC. The results demonstrated that NPC could adsorb the contaminants effectively, with adsorption capacity (qm) of 625 mg/g (SMX), 757 mg/g (BPA) and 872 mg/g (MO), respectively. These values were approximately 1.0-3.2 times higher than those obtained for single-walled carbon nanotubes (SWCNTs) and commercial powder active carbon (PAC) under the same conditions. With its high surface area and unique meso/macropore structure, the enhanced adsorption ofNPCmost likely originates fromthe cooperative interaction of a pore-fillingmechanism, electrostatic interaction, and hydrogen bonding. In particular, the pH value has a crucial impact on adsorption, suggesting the significant contribution of electrostatic interaction between NPC and the contaminants. This study provides a proof-of-concept demonstration of MOF-derived nanoporous carbons as effective adsorbents of contaminants for water treatment. (C) 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据