4.7 Review

Vascularization in Craniofacial Bone Tissue Engineering

期刊

JOURNAL OF DENTAL RESEARCH
卷 97, 期 9, 页码 969-976

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0022034518767120

关键词

coculture techniques; intercellular signaling peptides and proteins; biocompatible materials; epithelial cells; blood vessel prosthesis; angiogenesis inducing agents

资金

  1. National Natural Science Foundation of China [81771125, 81471803]
  2. Sichuan Province Youth Science and Technology Innovation Team [2014TD0001]

向作者/读者索取更多资源

Craniofacial bones, separate from the appendicular skeleton, bear a significant amount of strain and stress generated from mastication-related muscles. Current research on the regeneration of craniofacial bone focuses on the reestablishment of an elaborate vascular network. In this review, current challenges and efforts particularly in advances of scaffold properties and techniques for vascularization remodeling in craniofacial bone tissue engineering will be discussed. A microenvironment of ischemia and hypoxia in the biomaterial core drives propagation and reorganization of endothelial progenitor cells (EPCs) to assemble into a primitive microvascular framework. Co-culture strategies and delivery of vasculogenic molecules enhance EPCs' differentiation and stimulate the host regenerative response to promote vessel sprouting and strength. To optimize structural and vascular integration, well-designed microstructures of scaffolds are biologically considered. Proper porous structures, matrix stiffness, and surface morphology of scaffolds have a profound influence on cell behaviors and thus affect revascularization. In addition, advanced techniques facilitating angiogenesis and vaculogenesis have also been discussed. Oxygen delivery biomaterials, scaffold-free cell sheet techniques, and arteriovenous loop-induced axial vascularization strategies bring us new understanding and powerful strategies to manage revascularization of large craniofacial bone defects. Although promising histological results have been achieved, the efficient perfusion and functionalization of newly formed vessels are still challenging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据