4.7 Article

Etching Efficacy of Self-Etching Functional Monomers

期刊

JOURNAL OF DENTAL RESEARCH
卷 97, 期 9, 页码 1010-1016

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0022034518763606

关键词

adhesives; enamel; microscopy; X-ray crystallography; hydroxyapatite; nuclear magnetic resonance

资金

  1. JSPS KAKENHI [JP 16K2045508]
  2. Grants-in-Aid for Scientific Research [15K11158, 16K20455, 26462884] Funding Source: KAKEN

向作者/读者索取更多资源

Besides chemically interacting with hard tooth tissue, acidic functional monomers of self-etch adhesives should etch the prepared tooth surface to dissolve the smear layer and to provide surface micro-retention. Although the etching efficacy of functional monomers is commonly determined in terms of pH, the pH of adhesives cannot accurately be measured. Better is to measure the hydroxyapatite (HAp)-dissolving capacity, also considering that functional monomers may form monomer-Ca salts. Here, the etching efficacy of 6 functional monomers (GPDM, phenyl-P, MTEGP, 4-META, 6-MHP and 10-MDP) was investigated. Solutions containing 15 wt% monomer, 45 wt% ethanol, and 40 wt% water were prepared. Initially, we observed enamel surfaces exposed to monomer solution by scanning electron microscopy (SEM). X-ray diffraction (XRD) was employed to detect monomer-Ca salt formation. Phenyl-P exhibited a strong etching effect, while 10-MDP-treated enamel showed substance deposition, which was identified by XRD as 10-MDP-Ca salt. To confirm these SEM/XRD findings, we determined the etching efficacy of functional monomers by measuring both the concentration of Ca released from HAp using inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and the amount of monomer-Ca salt formation using P-31 magic-angle spinning (MAS) nuclear magnetic resonance (NMR). ICP-AES revealed that the highest Ca concentration was produced by phenyl-P and the lowest Ca concentration, almost equally, by 4-META and 10-MDP. Only 10-MDP formed 10-MDP-Ca salts, indicating that 10-MDP released more Ca from HAp than was measured by ICP-AES. Part of the released Ca was consumed to form 10-MDP-Ca salts. It is concluded that the repeatedly reported higher bonding effectiveness of 10-MDP-based adhesives must not only be attributed to the more intense chemical bonding of 10-MDP but also to its higher etching potential, a combination the other functional monomers investigated lack.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据