4.6 Article

Geodetic model of the 2015 April 25 Mw 7.8 Gorkha Nepal Earthquake and Mw 7.3 aftershock estimated from InSAR and GPS data

期刊

GEOPHYSICAL JOURNAL INTERNATIONAL
卷 203, 期 2, 页码 896-900

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gji/ggv335

关键词

Satellite geodesy; Radar interferometry; Earthquake source observations; Seismicity and tectonics

资金

  1. Japan Aerospace Exploration Agency (JAXA) [P1229002, P1390002]
  2. National Key Basic Research and Development Program of China [2013CB733303]
  3. National Natural Science Foundation of China [41222027, 41474007, 41574005]

向作者/读者索取更多资源

We map the complete surface deformation of 2015 M-w 7.8 Gorkha Nepal earthquake and its M-w 7.3 aftershock with two parallel ALOS2 descending ScanSAR paths' and two ascending Stripmap paths' images. The coseismic fault-slip model from a combined inversion of InSAR and GPS data reveals that this event is a reverse fault motion, with a slight right-lateral strike-slip component. The maximum thrust-slip and right-lateral strike-slip values are 5.7 and 1.2 m, respectively, located at a depth of 7-15 km, southeast to the epicentre. The total seismic moment 7.55 x 10(20) Nm, corresponding to a moment magnitude M-w 7.89, is similar to the seismological estimates. Fault slips of both the main shock and the largest aftershock are absent from the upper thrust shallower than 7 km, indicating that there is a locking lower edge of Himalayan Main Frontal Thrust and future seismic disaster is not unexpected in this area. We also find that the energy released in this earthquake is much less than the accumulated moment deficit over the past seven centuries estimated in previous studies, so the region surrounding Kathmandu is still under the threaten of seismic hazards.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据