4.7 Article

Predicting hyperketonemia by logistic and linear regression using test-day milk and performance variables in early-lactation Holstein and Jersey cows

期刊

JOURNAL OF DAIRY SCIENCE
卷 101, 期 3, 页码 2476-2491

出版社

ELSEVIER SCIENCE INC
DOI: 10.3168/jds.2017-13209

关键词

ketosis; Fourier transform infrared spectrometry; acetone; beta-hydroxybutyrate

资金

  1. CRI AgSource (Verona, WI)
  2. American Jersey Cattle Association (Reynoldsburg, OH)
  3. John Brandt Memorial Scholarship - Land O'Lakes Foundation

向作者/读者索取更多资源

Although cowside testing strategies for diagnosing hyperketonemia (HYK) are available, many are labor intensive and costly, and some lack sufficient accuracy. Predicting milk ketone bodies by Fourier transform infrared spectrometry during routine milk sampling may offer a more practical monitoring strategy. The objectives of this study were to (1) develop linear and logistic regression models using all available test-day milk and performance variables for predicting HYK and (2) compare prediction methods (Fourier transform infrared milk ketone bodies, linear regression models, and logistic regression models) to determine which is the most predictive of HYK. Given the data available, a secondary objective was to evaluate differences in test-day milk and performance variables (continuous measurements) between Holsteins and Jerseys and between cows with or without HYK within breed. Blood samples were collected on the same day as milk sampling from 658 Holstein and 468 Jersey cows between 5 and 20 d in milk (DIM). Diagnosis of HYK was at a serum beta-hydroxybutyrate (BHB) concentration >= 1.2 mmol/L. Concentrations of milk BHB and acetone were predicted by Fourier transform infrared spectrometry (Foss Analytical, Hillerod, Denmark). Thresholds of milk BHB and acetone were tested for diagnostic accuracy, and logistic models were built from continuous variables to predict HYK in primiparous and multiparous cows within breed. Linear models were constructed from continuous variables for primiparous and multiparous cows within breed that were 5 to 11 DIM or 12 to 20 DIM. Milk ketone body thresholds diagnosed HYK with 64.0 to 92.9% accuracy in Holsteins and 59.1 to 86.6% accuracy in Jerseys. Logistic models predicted HYK with 82.6 to 97.3% accuracy. Internally cross-validated multiple linear regression models diagnosed HYK of Holstein cows with 97.8% accuracy for primiparous and 83.3% accuracy for multiparous cows. Accuracy of Jersey models was 81.3% in primiparous and 83.4% in multiparous cows. These results suggest that predicting serum BHB from continuous test-day milk and performance variables could serve as a valuable diagnostic tool for monitoring HYK in Holstein and Jersey herds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据