4.4 Article

Steady-State Responses of Pulley-Belt Systems With a One-Way Clutch and Belt Bending Stiffness

出版社

ASME
DOI: 10.1115/1.4027456

关键词

nonlinearity; one-way clutch; bending stiffness; steady-state; differential quadrature

资金

  1. State Key Program of National Natural Science Foundation of China [10932006, 11232009]
  2. National Natural Science Foundation of China [11372171]
  3. Innovation Program of Shanghai Municipal Education Commission [12YZ028]

向作者/读者索取更多资源

A nonlinear hybrid discrete-continuous dynamic model is established to analyze the steady-state response of a pulley-belt system with a one-way clutch and belt bending stiffness. For the first time, the translating belt spans in pulley-belt systems coupled with one-way clutches are modeled as axially moving viscoelastic beams. Moreover, the model considers the rotations of the driving pulley, the driven pulley, and the accessory. The differential quadrature and integral quadrature methods are developed for space discretization of the nonlinear integropartial-differential equations in the dynamic model. Furthermore, the four-stage Runge-Kutta algorithm is employed for time discretization of the nonlinear piecewise ordinary differential equations. The time series are numerically calculated for the driven pulley, the accessory, and the translating belt spans. Based on the time series, the fast Fourier transform is used for obtaining the natural frequencies of the nonlinear vibration. The torque-transmitting directional behavior of the one-way clutch is revealed by the steady-state of the clutch torque in the primary resonances. The frequency-response curves of the translating belt, the driven pulley, and the accessory show that the one-way clutch reduces the resonance of the pulley-belt system. Furthermore, the belt cross section's aspect ratio significantly affects the dynamic response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据