4.6 Article

Effect of off-fault low-velocity elastic inclusions on supershear rupture dynamics

期刊

GEOPHYSICAL JOURNAL INTERNATIONAL
卷 203, 期 1, 页码 664-677

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gji/ggv302

关键词

Earthquake dynamics; Wave propagation

资金

  1. National Science Foundation NSF [EAR1345108]
  2. Southern California Earthquake Center [EAR0529922, 07HQAG0008]

向作者/读者索取更多资源

Heterogeneous velocity structures are expected to affect fault rupture dynamics. To quantitatively evaluate some of these effects, we examine a model of dynamic rupture on a frictional fault embedded in an elastic full space, governed by plane strain elasticity, with a pair of off-fault inclusions that have a lower rigidity than the background medium. We solve the elastodynamic problem using the Finite Element software Pylith. The fault operates under linear slip-weakening friction law. We initiate the rupture by artificially overstressing a localized region near the left edge of the fault. We primarily consider embedded soft inclusions with 20 per cent reduction in both the pressure wave and shear wave speeds. The embedded inclusions are placed at different distances from the fault surface and have different sizes. We show that the existence of a soft inclusion may significantly shorten the transition length to supershear propagation through the Burridge-Andrews mechanism. We also observe that supershear rupture is generated at pre-stress values that are lower than what is theoretically predicted for a homogeneous medium. We discuss the implications of our results for dynamic rupture propagation in complex velocity structures as well as supershear propagation on understressed faults.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据