4.3 Article

The role of surface-bound hydroxyl radicals in the reaction between H2O2 and UO2

期刊

JOURNAL OF COORDINATION CHEMISTRY
卷 71, 期 11-13, 页码 1799-1807

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00958972.2018.1466287

关键词

Hydroxyl radical; H2O2; UO2; catalysis; surface

资金

  1. Swedish Nuclear Fuel and Waste Management Co.
  2. SKB AB

向作者/读者索取更多资源

In this work, we have studied the reaction between H2O2 and UO2 with particular focus on the nature of the hydroxyl radical formed as an intermediate. Experiments were performed to study the kinetics of H2O2 consumption and uranium dissolution at different initial H2O2 concentrations. The results show that the consumption rates at a given H2O2 concentration are different depending on the initial H2O2 concentration. This is attributed to an alteration of the reactive interface, likely caused by blocking of surface sites by oxidized U/surface-bound hydroxyl radicals. The dissolution yield given by the amount of dissolved uranium divided by the amount of consumed hydrogen peroxide was used to compare the different cases. For all initial H2O2 concentrations, the dissolution yield increases with reaction time. The final dissolution yield decreases with increasing initial H2O2 concentration. This is expected from the mechanism of catalytic decomposition of H2O2 on oxide surfaces. As the experiments were performed in solutions containing 10mM H2O2 and a strong concentration dependence was observed in the 0.2-2.0mM H2O2 concentration range, we conclude that the intermediate hydroxyl radical is surface bound rather than free. [GRAPHICS] .

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据