4.6 Review

Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile

期刊

GEOMORPHOLOGY
卷 241, 期 -, 页码 98-121

出版社

ELSEVIER
DOI: 10.1016/j.geomorph.2015.03.034

关键词

Debris-covered glaciers; Rock glaciers; Chile; Water resources

资金

  1. Office of the Dean at the Metropolitan State University of Denver
  2. Office of Provost at the Metropolitan State University of Denver
  3. Office of International Studies at the Metropolitan State University of Denver
  4. Office of Sponsored Research and Programs at the Metropolitan State University of Denver
  5. ESRI

向作者/读者索取更多资源

In the Dry Andes of Chile (17 to 35 degrees S), debris-covered glaciers and rock glaciers are differentiated from true glaciers based on the percentage of surface debris cover, thickness of surface debris, and ice content. Internal ice is preserved by an insulating cover of thick debris, which acts as a storage reservoir to release water during the summer and early fall. These landforms are more numerous than glaciers in the central Andes; however, the existing legislation only recognizes uncovered or semicovered glaciers as a water resource. Glaciers, debris-covered glaciers, and rock glaciers are being altered or removed by mining operations to extract valuable minerals from the mountains. In addition, agricultural expansion and population growth in this region have placed additional demands on water resources. In a warmer climate, as glaciers recede and seasonal water availability becomes condensed over the course of a snowmelt season, rock glaciers and debris-covered glaciers contribute a larger component of base flow to rivers and streams. As a result, identifying and locating these features to implement sustainable regional planning for water resources is important. The objective of this study is to develop a classification system to identify debris-covered glaciers and rock glaciers based on the interpretation of satellite imagery and aerial photographs. The classification system is linked to field observations and measurements of ice content Debris-covered glaoiers have three subclasses: surface coverage of semi (class 1) and fully covered (class 2) glaciers differentiates the first two forms, whereas debris thickness is critical for class 3 when glaciers become buried with more than 3m of surface debris. Based on field observations, the amount of ice decreases from more than 85%, to 65-85%, to 45-65% for semi, fully, and buried debris-covered glaciers, respectively. Rock glaciers are characterized by three stages. Class 4 rock glaciers have pronounced transverse ridges and furrows that arch across the surface, which indicates flow produced via ice. Class 5 rock glaciers have ridges and furrows that appear linear in the direction of flow, indicating reduced flow from limited internal ice; and class 6 rock glaciers have subdued surface topography because the movement of the rock glacier has ceased. Ice content decreases from 25-45%, to 10-25%, to <10% from class 4 to 6, respectively. Examples from digital imagery, aerial photographs, and field photographs are provided for each class. The classification scheme can be used to identify and map debris-covered glaciers and rock glaciers to create an inventory. This will help improve recognition of these landforms as an important water resource in the dry Andes of Chile, which will aid in sustainable planning and development in basins that hold the majority of the population and support a large share of the economic activity in Chile. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据