4.6 Article

Distribution and growth of thaw slumps in the Richardson Mountains-Peel Plateau region, northwestern Canada

期刊

GEOMORPHOLOGY
卷 235, 期 -, 页码 40-51

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.geomorph.2015.01.024

关键词

Thaw slumps; Thermokarst; Permafrost; Tasseled Cap transformations; Size-frequency; Northwestem Canada

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Northwest Territories Cumulative Impact Monitoring Program

向作者/读者索取更多资源

Retrogressive thaw slumps are one of the most active geomorphic features in permafrost terrain. This study investigated the distribution and growth of thaw slumps in the Richardson Mountains and Peel Plateau region, northwestern Canada, using Tasseled Cap (TC) trend analysis of a Landsat image stack. Based on the TC linear trend image, more than 212 thaw slumps were identified in the study area, of which 189 have been active since at least 1985. The surface area of the slumps ranges from 0.4 to 52 ha, with 10 slumps exceeding 20 ha. The thaw slumps in the region are all situated within the maximum westward extent of the Laurentide Ice Sheet. Based on relations between frequency distribution of slumps and that of terrain factors in the landscape, the slumps are more likely to occur on the ice-rich hummocky rolling moraines at elevations of 300-350 m and 450-500 m and along east-facing slopes (slope aspects of 15 degrees to 180 degrees) with gradients of 8 degrees to 12 degrees. Pixel-level trend analysis of the TC greenness transformation in the Landsat stack allowed calculating headwall retreat rates for 19 thaw slumps. The 20-year average retreat rates (1990-2010 period) for 19 slumps ranged from 72 to 26.7 m yr(-1), with the largest slumps having higher retreat rates. At the regional scale, the 20-yr headwall retreat rates are mainly related to slope aspect, with south- and west-facing slopes exhibiting higher retreat rates, and large slumps appear to be generating feedbacks that allow them to maintain growth rates well above those of smaller slumps. Overall, the findings presented in this study allow highlighting of key sensitive landscapes and ecosystems that may be impacted by the presence and growth of thaw slumps in one of the most rapidly warming region in the Arctic. Crown Copyright (C) 2015 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据