4.4 Article

Mechanical properties of fiber reinforced polymer composites: A comparative study of conventional and additive manufacturing methods

期刊

JOURNAL OF COMPOSITE MATERIALS
卷 52, 期 23, 页码 3173-3181

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0021998318762297

关键词

Fiber reinforced polymer; additive manufacturing; fatigue; composite filament fabrication

向作者/读者索取更多资源

Fiber reinforced polymer composites have been around for many decades but recently their use has started to increase in multiple industries such as automotive, aerospace, and construction. The conventional composite manufacturing processes such as wet lay-up, resin transfer molding, automatic lay ups etc. suffer from a lot of practical and material issues which have limited their use. The mechanical properties of the parts produced by such processes also suffer from variation that causes problems downstream. Composites based additive manufacturing processes such as Fused Deposition Modeling and Composite Filament Fabrication are trying to remove some of the barriers to the use of composites. Additive manufacturing processes offer more design and material freedom than conventional composite manufacturing processes. This paper compares conventional composite processes for the manufacturing of Epoxy-Fiberglass fiber reinforced polymers with composite filament fabrication based Nylon-Fiberglass fiber reinforced polymers. Mechanical properties such as tensile strength, elastic modulus, and fatigue life are compared for the different processes. The effect of process parameters on these mechanical properties for the composite filament fabrication based process is also examined in this work. It is found that the composite filament fabrication based process is very versatile and the parts manufactured by this process can be used in various applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据