4.5 Article

The basal interstitial nucleus (BIN) of the cerebellum provides diffuse ascending inhibitory input to the floccular granule cell layer

期刊

JOURNAL OF COMPARATIVE NEUROLOGY
卷 526, 期 14, 页码 2231-2256

出版社

WILEY
DOI: 10.1002/cne.24479

关键词

Choline acetyltransferase; flocculus; GABA; gigantocellular reticular formation; golgi cells; human; macaque; Necab1; vestibulocerebellum; RRID: AB_2313712; RRID: AB_10000340; RRID: AB_10000320; RRID: AB_2313637; RRID: AB_11214092; RRID: AB_477652; RRID: AB_90715; RRID: AB_2278725; RRID: AB_303395; RRID: AB_302021; RRID: AB_94952; RRID: AB_1848014; RRID: AB2298772; AB5620; RRID: AB_91937; RRID: AB_887873; RRID: AB_887869; RRID: AB_2301751; RRID: AB_2315546; RRID: AB_1587626; RRID: AB_2187552; RRID: AB_2187539; RRID: AB_2307337

资金

  1. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO-ALW)
  2. Dutch Organization for Medical Sciences (ZONMW)
  3. European Research Council (ERC)
  4. BBSRC [BB/N015142/1] Funding Source: UKRI

向作者/读者索取更多资源

The basal interstitial nucleus (BIN) in the white matter of the vestibulocerebellum has been defined more than three decades ago, but has since been largely ignored. It is still unclear which neurotransmitters are being used by BIN neurons, how these neurons are connected to the rest of the brain and what their activity patterns look like. Here, we studied BIN neurons in a range of mammals, including macaque, human, rat, mouse, rabbit, and ferret, using tracing, immunohistological and electrophysiological approaches. We show that BIN neurons are GABAergic and glycinergic, that in primates they also express the marker for cholinergic neurons choline acetyl transferase (ChAT), that they project with beaded fibers to the glomeruli in the granular layer of the ipsilateral floccular complex, and that they are driven by excitation from the ipsilateral and contralateral medio-dorsal medullary gigantocellular reticular formation. Systematic analysis of codistribution of the inhibitory synapse marker VIAAT, BIN axons, and Golgi cell marker mGluR2 indicate that BIN axon terminals complement Golgi cell axon terminals in glomeruli, accounting for a considerable proportion (>20%) of the inhibitory terminals in the granule cell layer of the floccular complex. Together, these data show that BIN neurons represent a novel and relevant inhibitory input to the part of the vestibulocerebellum that controls compensatory and smooth pursuit eye movements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据