4.7 Article

Noble metal sandwich-like TiO2@Pt@C3N4 hollow spheres enhance photocatalytic performance

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 514, 期 -, 页码 791-800

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2018.01.011

关键词

Double-shelled nanocomposite; Visible-light-driven photocatalysis; Pollution treatment

资金

  1. National Natural Science Foundation of China [21675077, 21475055]
  2. Program for New Century Excellent Talents in University [NCET-11 0904]

向作者/读者索取更多资源

The goal of this work was to assess the performance of Pt nanoparticles (NPs) as co-catalysts on the photocatalytic activity of TiO2@Pt@C3N4 hollow spheres, which was tested by photodegrading rhodamine B and methyl blue under visible light irradiation. TiO2@Pt@C3N4 composites were fabricated by using modified polystyrene balls as templates, hydrothermal reactions, and calcination. Under simulated sunlight irradiation, photocatalytic activity was in the following of TiO2@Pt@C3N4 > TiO2@C3N4 > C3N4 > P25. The photo-conversion rate of the TiO2@Pt@C3N4 increased significantly relative to TiO2@C3N4 and the others. The combination of TiO2 and C3N4, as well as the sandwiched of Pt NPs reduce electron-hole recombination as a result of having an electron trap site, which can store and shuttle photo-generated electrons, and enhance photo-generation of active radicals. Electron paramagnetic resonance (EPR) spectroscopy, as well as photo-luminescence (PL), and electrochemical measurements were taken to verify this conclusion. Considering the multi-functional combination of precious metals and semiconductor materials, this work may provide new ideas for the design of high-performance catalysts. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据