4.7 Article

Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 509, 期 -, 页码 47-57

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2017.08.097

关键词

Doxorubicin; Quercetin; Synergistic; Gold nanocages; Multidrug resistance

资金

  1. National Natural Science Foundation of China [81573352]
  2. Shanghai Jiao Tong University Funds [YG2014ZD01, YG2016MS28, YG2016MS17]

向作者/读者索取更多资源

Previously, combination chemotherapy of doxorubicin (DOX) and quercetin (QUR) was developed to improve antitumor effects and reverse multidrug resistance and several biocompatible nanocarriers, such as liposomes and micelles, were validated for their targeted delivery. In this study, we report a near infrared (NIR)-responsive drug delivery system based on DOX and QUR co-loaded gold nanocages (AuNCs) with biotin modification. The system was simply fabricated by filling the hollow interiors of AuNCs with tetradecanol (TD), a phase-change material with a melting point of 39 degrees C, to control the drug release. The main cause of multidrug resistance (MDR) of DOX is the overexpression of P-glycoprotein (Pgp), which can be inhibited by QUR. Thus the combination chemotherapy of DOX and QUR may provide a promising strategy for MDR. The in vitro cytotoxicity of DOX and QUR at several fixed mass ratios was carried out and showed that the combination index (CI) was the smallest at the ratio of 1:0.2, indicating that the best synergistic effect was achieved. The resultant nanocomplex (abbreviated as BPQD-AuNCs) exhibited fast release (80% released in 20 min) and strong cytotoxicity against MCF-7/ADR cells (IC50, 1.5 mu g/mL) under NIR irradiation. Additionally, BPQD-AuNCs were found to generate a large amount of reactive oxygen species (ROS), to inhibit P-gp expression and ATP activity. Taken together, the results show that BPQD-AuNC is a prospective nano-delivery system for overcoming multidrug-resistant cancer. (C) 2017 Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据