4.7 Article

Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 513, 期 -, 页码 831-842

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2017.11.064

关键词

Multienzyme complex mimicking nanozymes; Superoxide dismutase; Catalase; Peroxidase; Enzyme kinetics

资金

  1. Gujarat Institute for Chemical Technology (GICT), Gandhinagar
  2. Science and Engineering Research Board (SERB), India [ILS/SERB/2015-2016/01]
  3. Early Carrier Research grant Award (ECRA) [ECR/2016/000055]
  4. Office of Biological and Environmental Research
  5. EMSL intramural program

向作者/读者索取更多资源

Catalytically active individual gold (Au) and cerium oxide (CeO2) nanoparticles (NPs) are well known to exhibit specific enzyme-like activities, such as natural catalase, oxidase, superoxide dismutase, and peroxidase enzymes. These activities have been maneuvered to design several biological applications such as immunoassays, glucose detection, radiation and free radical protection and tissue engineering. In biological systems, multienzyme complexes are involved in catalyzing important reactions of essential metabolic processes such as respiration, biomolecule synthesis, and photosynthesis. It is well known that metabolic processes linked with multienzyme complexes offer several advantages over reactions catalyzed by individual enzymes. A functional nanozyme depicting multienzyme like properties has eluded the researchers in the nanoscience community for the past few decades. In the current report, we have designed a functional multienzyme in the form of Gold (core)-CeO2 (shell) nanoparticles (Au/CeO2 CSNPs) exhibiting excellent peroxidase, catalase, and superoxide dismutase enzyme-like activities that are controlled simply by tuning the pH. The reaction kinetic parameters reveal that the peroxidase-like activity of this core-shell nanozyme is comparable to natural horseradish peroxidase (HRP) enzyme. Unlike peroxidase-like activity exhibited by other nanomaterials, Au/CeO2 CSNPs showed a decrease in hydroxyl radical formation, suggesting that the biocatalytic reactions are performed by efficient electron transfers. A significant enzyme-like activity of this core-shell nanoparticle was conserved at extreme pH (2-11) and temperatures (up to 90 degrees C), clearly suggesting the superiority over natural enzymes. Further, the utility of peroxidase-like activity of this core-shell nanoparticles was extended for the detection of glucose, which showed a linear range of detection between (100 mu M to 1 mM). It is hypothesized that the proximity of the redox potentials of Au+/Au and Ce (III)/Ce (IV) may result in a redox couple promoting the multienzyme activity of core-shell nanoparticles. Au/CeO2 CSNPs may open new directions for development of single platform sensors in multiple biosensing applications. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据