4.7 Article

Large landslides lie low: Excess topography in the Himalaya-Karakoram ranges

期刊

GEOLOGY
卷 43, 期 6, 页码 523-526

出版社

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/G36527.1

关键词

-

类别

资金

  1. German Research Foundation [KO3937/2]
  2. Potsdam Research Cluster for Georisk Analysis, Environmental Change and Sustainability (PROGRESS)

向作者/读者索取更多资源

Mass wasting is an important process for denuding hillslopes and lowering ridge crests in active mountain belts such as the Himalaya-Karakoram ranges (HKR). Such a high-relief landscape is likely to be at its mechanical threshold, maintained by competing rapid rock uplift, river incision, and pervasive slope failure. We introduce excess topography, Z(E), for quantifying potentially unstable rock-mass volumes inclined at angles greater than a specified threshold angle. We find that Z(E) peaks along major fluvial and glacial inner gorges, which is also where the majority of 492 large (>0.1 km(2)) rock-slope failures occur in the Himalaya's largest cluster of documented Pleistocene to Holocene bedrock landslides. Our data reveal that bedrock landslides in the HKR chiefly detached from near or below the median elevation, whereas glaciers and rock glaciers occupy higher-elevation bands almost exclusively. Less than 10% of the area of the HKR is upslope of glaciers, such that possible censoring of evidence of large bedrock landslides above the permanent snow line barely affects this finding. Bedrock landslides appear to preferentially undermine topographic relief in response to fluvial and glacial incision along inner gorges, unless more frequent and smaller undetected failures, or rigorous (peri-)glacial erosion, compensate for this role at higher elevation. Either way, the distinct patterns of excess topography and large bedrock landsliding in the HKR juxtapose two stacked domains of landslide and (peri-)glacial erosion that may respond to different time scales of perturbation. Our findings call for more detailed analysis of vertical erosional domains and their geomorphic coupling in active mountain belts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据