4.7 Article

Improving the Simulation of Tropical Convective Cloud-Top Heights in CAM5 with CloudSat Observations

期刊

JOURNAL OF CLIMATE
卷 31, 期 13, 页码 5189-5204

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-18-0027.1

关键词

-

资金

  1. National Key Research and Development Program of China [2017YFA0604000]
  2. U.S. National Science Foundation [AGS-1549259]
  3. U.S. Department of Energy, Office of Science, Biological and Environmental Research Program (BER) [DE-SC0016504]
  4. U.S. Department of Energy (DOE) [DE-SC0016504] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Using 4 years of CloudSat data, the simulation of tropical convective cloud-top heights (CCTH) above 6 km simulated by the convection scheme in the Community Atmosphere Model, version 5 (CAM5), is evaluated. Compared to CloudSat observations, CAM5 underestimates CCTH by more than 2 km on average. Further analysis of model results suggests that the dilute CAPE calculation, which has been incorporated into the convective parameterization since CAM4, is a main factor restricting CCTH to much lower levels. After removing this restriction, more convective clouds develop into higher altitudes, although convective clouds with tops above 12 km are still underestimated significantly. The environmental conditions under which convection develops in CAM5 are compared with CloudSat observations for convection with similar CCTHs. It is shown that the model atmosphere is much more unstable compared to CloudSat observations, and there is too much entrainment in CAM5. Since CCTHs are closely associated with cloud radiative forcing, the impacts of CCTH on model simulation are further investigated. Results show that the change of CCTH has important impacts on cloud radiative forcing and precipitation. With increased CCTHs, there is more cloud radiative forcing in tropical Africa and the eastern Pacific, but less cloud radiative forcing in the western Pacific. The contribution to total convective precipitation from convection with cloud tops above 9 km is also increased substantially.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据