4.7 Article

Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass

期刊

JOURNAL OF CLEANER PRODUCTION
卷 180, 期 -, 页码 437-449

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2018.01.133

关键词

Vegetable biomass; Food residuals; Engineered biochar; Potassium-rick feedstock; Environmental remediation

资金

  1. NSF [CBET-1054405]
  2. Fulbright Program of United State of America (USEF-Pakistan)

向作者/读者索取更多资源

This work evaluated the novel application of biochars derived from potassium (K)-rich feedstock (banana peels (BB) and cauliflower leaves (CB)). The sorptive property of the produced biochars was evaluated with multi-element [Copper (Cu(II)), Cadmium (Cd(II)) and Led (Pb(II))] sorption experiments. Morphologies of the pre- and post-sorption samples were characterized using SEM/EDS and XRD spectra analyses. The produced biochar was further subjected to mono-element sorption studies to explore the effect of the pH value of the sorbate solution on the removal efficiency of Cu(II), Cd(II) and Pb(II) ions. Biochar productivity was noticeably high (61.44 and 64.66% for BB and CB, respectively) due to the catalytic action of K during the pyrolytic conversion of the feedstock. K-minerals were the predominant on the XRD patterns of both biochars. Metal sorption capacity of BB was much greater than that of CB due to its higher electrostatic attraction, which was the predominant mechanism governed sorption process. Sorption of metal ions onto BB and CB was pH-dependent as the sorption capacity increased significantly with the increase of the pH value of sorbate solutions (6.0 with Cu(II), Pb(II) and 8.0 with Cd(II)). Dynamics of metal ions sorption onto biochars showed competitive sorption following the order: Pb(II) > Cu(II) > Cd(II). (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据