4.7 Article

Characterizing coarse-resolution watershed soil moisture heterogeneity using fine-scale simulations

期刊

HYDROLOGY AND EARTH SYSTEM SCIENCES
卷 18, 期 7, 页码 2463-2483

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/hess-18-2463-2014

关键词

-

资金

  1. Office of Science, Office of Biological and Environmental Research, of the US Department of Energy [DE-AC02-05CH11231]
  2. Next-Generation Ecosystem Experiments (NGEE Arctic) project
  3. Office of Biological and Environmental Research in the DOE Office of Science [DE-AC02-05CH11231]
  4. Office of Biological and Environmental Research of the US Department of Energy [DE-SC0010620]

向作者/读者索取更多资源

Watershed-scale hydrological and biogeochemical models are usually discretized at resolutions coarser than where significant heterogeneities in topography, abiotic factors (e.g., soil properties), and biotic (e.g., vegetation) factors exist. Here we report on a method to use fine-scale (220m grid cells) hydrological model predictions to build reduced-order models of the statistical properties of near-surface soil moisture at coarse resolution (2(5) times coarser, similar to 7 km). We applied a watershed-scale hydrological model (PAWS-CLM4) that has been previously tested in several watersheds. Using these simulations, we developed simple, relatively accurate (R-2 similar to 0.7-0.8), reduced-order models for the relationship between mean and higher-order moments of near-surface soil moisture during the nonfrozen periods over five years. When applied to transient predictions, soil moisture variance and skewness were relatively accurately predicted (R-2 similar to 0.7-0.8), while the kurtosis was less accurately predicted (R-2 similar to 0.5). We also tested 16 system attributes hypothesized to explain the negative relationship between soil moisture mean and variance toward the wetter end of the distribution and found that, in the model, 59% of the variance of this relationship can be explained by the elevation gradient convolved with mean evapotranspiration. We did not find significant relationships between the time rate of change of soil moisture variance and covariances between mean moisture and evapotranspiration, drainage, or soil properties, as has been reported in other modeling studies. As seen in previous observational studies, the predicted soil moisture skewness was predominantly positive and negative in drier and wetter regions, respectively. In individual coarse-resolution grid cells, the transition between positive and negative skewness occurred at a mean soil moisture of similar to 0.25-0.3. The type of numerical modeling experiments presented here can improve understanding of the causes of soil moisture heterogeneity across scales, and inform the types of observations required to more accurately represent what is often unresolved spatial heterogeneity in regional and global hydrological models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据