3.8 Proceedings Paper

Effect of surface wettability on carbon nanotube water-based nanofluid droplet impingement heat transfer

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1742-6596/525/1/012024

关键词

-

向作者/读者索取更多资源

Recent studies into droplet impingement heat transfer have demonstrated that it has great potential for providing high heat flux cooling in areas such as thermal management of electronics. The wettability of the surface affects the flow dynamics of the impingement process and the resulting heat transfer. In this study, the effect of surface wettability on carbon nanotube water-based nanofluid droplet impingement heat transfer has been studied and compared with water. Superhydrophobic or hydrophilic coatings are applied on one face of monocrystalline silicon wafers (the drop impinges on this face) while the other face is painted matt black to permit infrared thermography. The silicon wafer is preheated to 40 C and a single droplet impinges normally on the top facing coated surface of the monocrystalline silicon wafer. The inverse heat conduction problem has been solved using the measured black face temperature. For both the water and nanofluid droplets, the convective heat transfer coefficient reduces with the decrease in surface wettability. It is found that the nanofluid produce a significantly higher convective heat transfer coefficient during droplet impingement than water, with the enhancement increasing with increasing wettability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据