4.7 Article

Obesity-induced mitochondrial dysfunction in porcine adipose tissue-derived mesenchymal stem cells

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 233, 期 8, 页码 5926-5936

出版社

WILEY
DOI: 10.1002/jcp.26402

关键词

mesenchymal stem cells; metabolic syndrome; mitochondria; obesity

资金

  1. National Institute of Diabetes and Digestive and Kidney Diseases [DK102325, DK104273, DK106427, DK73608, HL123160]

向作者/读者索取更多资源

Transplantation of autologous mesenchymal stem cells (MSCs) may be a viable option for treatment of several diseases. MSCs efficacy depends on adequate function of their mitochondria, which might be impaired in a noxious milieu. We hypothesized that obesity compromises MSCs mitochondrial structure and function, possibly via micro-RNA (miRNA)-based mechanisms. MSCs were collected from swine abdominal adipose tissue after 16 weeks of Lean or Obese diet (n=7 each). Mitochondrial structure was assessed by electron microscopy and function by membrane potential and cytochrome-c oxidase (COX)-IV activity. Oxidative stress was assessed by Mito-SOX and dihydroethidium staining. Next-generation sequencing (RNA-seq) was performed to identify miRNAs expression in MSCs, and predicted mitochondrial target genes were then identified (MitoCarta). Compared to Lean-MSCs, mitochondria from Obese-MSCs were smaller and showed cristae remodeling and loss. Mitochondrial membrane potential and COX-IV activity decreased in Obese-MSCs, associated with increased mitochondrial oxidative stress. RNA-seq generated reads for 413 miRNAs, of which 5 miRNAs were upregulated in Obese-MSCs (fold change >2, p<0.05) and found to target 43 specific mitochondrial genes. Obesity impairs MSC mitochondrial structure and function, possibly mediated partly through miRNA-induced mitochondrial gene regulation, leading to increased oxidative stress. Importantly, these alterations may limit the therapeutic use of autologous MSCs in subjects with obesity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据