4.7 Article

Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 166, 期 -, 页码 344-371

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2015.06.021

关键词

-

资金

  1. Department of Energy through BES [DE-FG02-13ER16402]
  2. UCLA Career Development Award
  3. Hellman Fellowship
  4. NSF [EAR-0949191, EAR-1325054, ARC-1215551, OCE-1437166, OCE09-27089, OCE-1357665]
  5. ACS [51182-DNI2]
  6. NOAA [NA13OAR4310186]
  7. U.S. Geological Survey National Research Program
  8. Directorate For Geosciences [1437166] Funding Source: National Science Foundation
  9. Directorate For Geosciences
  10. Division Of Ocean Sciences [1437371] Funding Source: National Science Foundation
  11. Division Of Ocean Sciences [1437166] Funding Source: National Science Foundation

向作者/读者索取更多资源

Clumped-isotope thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of C-13 and O-18 isotopes bound to each other within carbonate minerals in (COO22-)-C-13-O-18-O-16 groups (heavy isotope clumps). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine C-13-O-18 bond ordering (Delta(47)) and delta O-18 of CO32- and HCO3- molecules at a 25 degrees C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium C-13-O-18 bond abundances and delta O-18 of different DIC species and minerals as a function of temperature. Experiments and theory indicate Delta(47) and delta O-18 compositions of CO32+ and HCO3- ions are significantly different from each other. Experiments constrain the delta(47)-delta O-18 slope for a pH effect (0.011 +/- 0.001; 12 >= pH >= 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a delta(47)-delta O-18 slope of 0.011 +/- 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Delta(47) and delta O-18 are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 degrees C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two types of experiments yielded statistically indistinguishable results, and these measurements yield a calibration that overlaps with our theoretical predictions for calcite at equilibrium. The slow-growing Devils Hole calcite exhibits Delta(47) and delta O-18 values consistent with lattice equilibrium. Factors influencing DIC speciation (pH, salinity) and the timescale for DIC equilibration, as well as reactions at the mineral- solution interface, have the potential to influence clumped-isotope signatures and the delta O-18 of carbonate minerals. In fast-growing carbonate minerals, solution chemistry may be an important factor, particularly over extremes of pH and salinity. If a crystal grows too rapidly to reach an internal equilibrium (i.e., achieve the value for the temperature-dependent mineral lattice equilibrium), it may record the clumped-isotope signature of a DIC species (e.g., the temperature-dependent equilibrium of HCO3-) or a mixture of DIC species, and hence record a disequilibrium mineral composition. For extremely slow-growing crystals, and for rapidly-grown samples grown at a pH where HCO3- dominates the DIC pool at equilibrium, effects of solution chemistry are likely to be relatively small or negligible. In summary, growth environment, solution chemistry, surface equilibria, and precipitation rate may all play a role in dictating whether a crystal achieves equilibrium or disequilibrium clumped-isotope signatures. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据