4.5 Article

Haemin attenuates intermittent hypoxia-induced cardiac injury via inhibiting mitochondrial fission

期刊

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
卷 22, 期 5, 页码 2717-2726

出版社

WILEY
DOI: 10.1111/jcmm.13560

关键词

apoptosis; fission; haeme oxygenase-1; haemin; intermittent hypoxia; mitochondria

资金

  1. Young Scientist Fund of National Natural Science Foundation of China (NSFC) [81300063]
  2. Natural Science Foundation of Guangdong Province [2014A030313501A]

向作者/读者索取更多资源

Obstructive sleep apnoea (OSA) characterized by intermittent hypoxia (IH) is closely associated with cardiovascular diseases. IH confers cardiac injury via accelerating cardiomyocyte apoptosis, whereas the underlying mechanism has remained largely enigmatic. This study aimed to explore the potential mechanisms involved in the IH-induced cardiac damage performed with the IH-exposed cell and animal models and to investigate the protective effects of haemin, a potent haeme oxygenase-1 (HO-1) activator, on the cardiac injury induced by IH. Neonatal rat cardiomyocyte (NRC) was treated with or without haemin before IH exposure. Eighteen male Sprague-Dawley (SD) rats were randomized into three groups: control group, IH group (PBS, ip) and IH + haemin group (haemin, 4 mg/kg, ip). The cardiac function was determined by echocardiography. Mitochondrial fission was evaluated by Mitotracker staining. The mitochondrial dynamics-related proteins (mitochondrial fusion protein, Mfn2; mitochondrial fission protein, Drp1) were determined by Western blot. The apoptosis of cardiomyocytes and heart sections was examined by TUNEL. IH regulated mitochondrial dynamics-related proteins (decreased Mfn2 and increased Drp1 expressions, respectively), thereby leading to mitochondrial fragmentation and cell apoptosis in cardiomyocytes in vitro and in vivo, while haemin-induced HO-1 up-regulation attenuated IH-induced mitochondrial fragmentation and cell apoptosis. Moreover, IH resulted in left ventricular hypertrophy and impaired contractile function in vivo, while haemin ameliorated IH-induced cardiac dysfunction. This study demonstrates that pharmacological activation of HO-1 pathway protects against IH-induced cardiac dysfunction and myocardial fibrosis through the inhibition of mitochondrial fission and cell apoptosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据