3.8 Proceedings Paper

Technology advancements for next generation falling particle receivers

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.egypro.2014.03.043

关键词

Falling particle receiver; recirculation; air curtain; solid particles; storage; particle heat exchange; proppants; particle lift

资金

  1. U.S. Department of Energy, SunShot Initiative [DE-EE0000595-1558]
  2. U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

向作者/读者索取更多资源

The falling particle receiver is a technology that can increase the operating temperature of concentrating solar power (CSP) systems, improving efficiency and lowering the costs of energy storage. Unlike conventional receivers that employ fluid flowing through tubular receivers, falling particle receivers use solid particles that are heated directly as they fall through a beam of concentrated sunlight for direct heat absorption and storage. Because the solar energy is directly absorbed by the particles, the flux limitations associated with tubular central receivers are mitigated. Once heated, the particles may be stored in an insulated tank and/or used to heat a secondary working fluid (e. g., steam, CO2, air) for the power cycle. Thermal energy storage costs can be significantly reduced by directly storing heat at higher temperatures in a relatively inexpensive, stable medium. This paper presents an overview of recent advancements being pursued in key areas of falling particle receiver technology, including (1) advances in receiver design with consideration of particle recirculation, air recirculation, and interconnected porous structures; (2) advances in particle materials to increase the solar absorptance and durability; and (3) advances in the balance of plant for falling particle receiver systems including thermal storage, heat exchange, and particle conveyance. (C) 2013 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据