4.7 Article

Mechanistic insights into iron redox transformations in the presence of natural organic matter: Impact of pH and light

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 165, 期 -, 页码 14-34

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2015.05.010

关键词

-

资金

  1. Australian Research Council (ARC) Discovery Early Career Researcher Award (DECRA)
  2. Australian Postgraduate Award
  3. ARC Discovery Grant [DP120103234]

向作者/读者索取更多资源

The various pathways contributing to the formation and decay of Fe(II) in the presence of Suwanee River Fulvic Acid (SRFA) in acidic solutions are investigated here both in the presence and absence of light and over the pH range of 3-5. Our results show that ligand to metal charge transfer (LMCT) is the dominant pathway for photochemical Fe(III) reduction and resultant Fe(II) formation over the pH range examined. In comparison, under non-irradiated conditions, Fe(III) reduction occurs, for the most part, as a result of the presence of hydroquinone-like moieties in SRFA. Irradiation of SRFA also results in the generation of both long-lived and short-lived Fe(II) oxidants with the long-lived Fe(II) oxidant similar to semiquinone-like radicals with these radicals formed via superoxide-mediated oxidation of the hydroquinone-like moieties present in SRFA. Dioxygen plays an important role in production of the long-lived Fe(II) oxidant since generation of superoxide occurs via reduction of dioxygen. The short-lived Fe(II) oxidant is similar to peroxyl radicals which are generated via hydroxylation of organic moieties. The overall rate of generation of both the short- and long-lived Fe(II) oxidants is dependent on pH with the generation rates of these oxidants increasing with increase in pH. Based on our experimental data, we have developed a kinetic model that satisfactorily describes all Fe transformations observed in SRFA solutions over the pH range 3-5 under non-irradiated, previously irradiated and continuously irradiated conditions. Fe species undergo continual cycling between Fe(II) and Fe(III) oxidation states with Fe(II)-Fe(III) turnover frequencies in the presence of 10 mg.L-1 SRFA of 17.3, 27.4 and 33.2 h(-1) at pH 3, 3.5 and 4 on continuous photolysis compared to turnover frequencies of 1.9, 2.5 and 2.9 h(-1) at pH 3, 3.5 and 4 in the dark. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据