4.5 Article

Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 Landers earthquake

期刊

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
卷 16, 期 5, 页码 1577-1598

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2014GC005693

关键词

off-fault deformation; fault-width; COSI-Corr; Landers; slip distribution; fractal

资金

  1. US National Science Foundation [NSF EAR-1147436]
  2. Division Of Earth Sciences
  3. Directorate For Geosciences [1147436] Funding Source: National Science Foundation

向作者/读者索取更多资源

Coseismic surface deformation in large earthquakes is typically measured using field mapping and with a range of geodetic methods (e.g., InSAR, lidar differencing, and GPS). Current methods, however, either fail to capture patterns of near-field coseismic surface deformation or lack preevent data. Consequently, the characteristics of off-fault deformation and the parameters that control it remain poorly understood. We develop a standardized method to fully measure the surface, near-field, coseismic deformation patterns at high resolution using the COSI-Corr program by correlating pairs of aerial photographs taken before and after the 1992 M-w 7.3 Landers earthquake. COSI-Corr offers the advantage of measuring displacement across the entire zone of surface deformation and over a wider aperture than that available to field geologists. For the Landers earthquake, our measured displacements are systematically larger than the field measurements, indicating the presence of off-fault deformation. We show that 46% of the total surface displacement occurred as off-fault deformation, over a mean deformation width of 154 m. The magnitude and width of off-fault deformation along the rupture is primarily controlled by the macroscopic structural complexity of the fault system, with a weak correlation with the type of near-surface materials through which the rupture propagated. Both the magnitude and width of distributed deformation are largest in stepovers, bends, and at the southern termination of the surface rupture. We find that slip along the surface rupture exhibits a consistent degree of variability at all observable length scales and that the slip distribution is self-affine fractal with dimension of 1.56.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据