4.4 Article

Dynamic bacterial community changes in the autothermal thermophilic aerobic digestion process with cell lysis activities, shaking and temperature increase

期刊

JOURNAL OF BIOSCIENCE AND BIOENGINEERING
卷 126, 期 2, 页码 196-204

出版社

SOC BIOSCIENCE BIOENGINEERING JAPAN
DOI: 10.1016/j.jbiosc.2018.02.012

关键词

Autothermal thermophilic aerobic digestion; Bacterial community changes; Cell lysis activity; Shaking; Temperature increase

资金

  1. Chikujo Town office, Fukuoka Prefecture, Japan
  2. JST/JICA, SATREPS (Science and Technology Research Partnership for Sustainable Development)

向作者/读者索取更多资源

Autothermal thermophilic aerobic digestion (ATAD) is conducted for stabilization of sludge waste and is driven by the action of various microorganisms under aerobic conditions. However, the mechanism controlling bacterial community changes during ATAD via three (initial, middle and final) phases is currently unclear. To investigate this mechanism, activity analysis and a microcosm assay with shaking were performed on a bacterial community during the initial, middle, and final phases of incubation. Cell lysis activities toward gram-negative bacteria, but not gram-positive bacteria, were detected in the ATAD samples in the middle and final phases. During shaking incubation in initial-phase samples at 30 degrees C, major operational taxonomic units (OTUs) related to Acinetobacter indicus and Arcobacter cibarius dramatically increased along with decreases in several major OTUs. In middle-phase samples at 45 degrees C, we observed a major alteration of OTUs related to Caldicellulosiruptor bescii and Aciditerrimonas ferrireducens, together with distinct decreases in several other OTUs. Final-phase samples maintained a stable bacterial community with major OTUs showing limited similarities to Heliorestis baculata, Caldicellulosiruptor bescii, and Ornatilinea apprima. In conclusion, the changes in the bacterial community observed during ATAD could be partially attributed to the cell lysis activity toward gram-negative bacteria in the middle and final phases. The microcosm assay suggested that certain physical factors, such as a high oxygen supply and shearing forces, also might contribute to bacterial community changes in the initial and middle phases, and to the stable bacterial community in the final phase of ATAD. (C) 2018, The Society for Biotechnology, Japan. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据